If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2=180
We move all terms to the left:
9x^2-(180)=0
a = 9; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·9·(-180)
Δ = 6480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6480}=\sqrt{1296*5}=\sqrt{1296}*\sqrt{5}=36\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{5}}{2*9}=\frac{0-36\sqrt{5}}{18} =-\frac{36\sqrt{5}}{18} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{5}}{2*9}=\frac{0+36\sqrt{5}}{18} =\frac{36\sqrt{5}}{18} =2\sqrt{5} $
| |6x+2|=|x+3| | | 9x2−180=0 | | x+37=x+93*2 | | x+37=x+93 | | 8x-25=81 | | 8x+25=81 | | -7+5x=1+3x | | 4x+7-3x-8=7x-6x-4 | | 1/5^x-2=125^x/2 | | -5x-5=-6x+4 | | t^2-8t=33 | | 6(3x^2-1)=3(5x^2-7) | | 12(t-3)+1=6-(t-1)-5 | | (6x-2)+(4x-8)=90 | | 4x-12-3x+15-3=4x-25 | | 5+x/7=7 | | 0=(x^2)+8x+4 | | (x^2)+8x+4=0 | | 13(3c-9(=4c-7 | | 100=4^t | | 13y-7y=6 | | 8y+16=3y81 | | 5a=17a+48 | | 0=x3-100x | | 8x^2+1=201 | | 3(5y/3)-2Y=15 | | x3-100x=0 | | 2s=2(8) | | (-5/3y)=35 | | 9-3/3*5+10=x | | (9y/y-6)+3=(6y/y-6) | | 5(12+-1.2y)+6y=60 |